Properties of the WTS (and Addendum) III -- Wohin? wb 091117 8. Generalized unfolding product. 8.1. By the generalized unfolding produce (GUP), we mean 8.1.1. φ(x) ≡ Π{0 ≤ i < ∞, 1+µ(i) x^(2^i)} = (1+µ(0) x)(1+µ(1) x^2)(1+µ(2) x^4)(1+µ(3) x^8)... 8.1.2. φ(x) = 1 + µ(0) x + µ(1) x^2 + µ(0) µ(1) x^3 + µ(2) x^4 + µ(0) µ(2) x^5 + µ(1) µ(2) x^6 + µ(0) µ(1) µ(2) x^7 +... 8.2. We have examined several GUPs, for all of which, µ(i) is constant: 8.2.1. µ(i) = 1 (3.1.1) 8.2.2. µ(i) = -1 (3.2.1) 8.2.3. µ(i) = E (5.3.2.) (formal operator equation) 8.2.4. µ(i) = 2 (6.1.1) 8.2.5. µ(i) = -2 (6.2.1) 8.3. In general, for a GUP, 8.3.1. G = Γ{0 ≤ i < ∞, g(i)}, 8.3.2. g(i) = (1), (µ(0)), (µ(1)), (µ(0) µ(1)), (µ(2)), (µ(0) µ(2)), (µ(1) µ(2)), (µ(0) µ(1) µ(2)),... where the number of µ(i) in the above products for g(i) is v(i) (see 5.1). 8.4. GUPs with nonconstant µ(i), example. 8.4.1. Let µ(i) = i+1, i = 0,1,2,... Then 8.4.1.1. g(i) = (1), (1), (2), (1·2), (3), (1·3), (2·3), (1·